On semigroups with minimal left ideals and without minimal right ideals.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideals in Left Almost Semigroups

A left almost semigroup (LA-semigroup) or an Abel-Grassmann’s groupoid (AG-groupoid) is investigated in several papers. In this paper we have discussed ideals in LA-semigroups. Specifically, we have shown that every ideal in an LA-semigroup S with left identity e is prime if and only if it is idempotent and the set of ideals of S is totally ordered under inclusion. We have shown that an ideal o...

متن کامل

Minimal Generators for Symmetric Ideals

Let R = K[X] be the polynomial ring in infinitely many indeterminates X over a field K, and let SX be the symmetric group of X. The group SX acts naturally on R, and this in turn gives R the structure of a module over the group ring R[SX ]. A recent theorem of Aschenbrenner and Hillar states that the module R is Noetherian. We address whether submodules of R can have any number of minimal gener...

متن کامل

Monomial ideals of minimal depth

Let S be a polynomial algebra over a field. We study classes of monomial ideals (as for example lexsegment ideals) of S having minimal depth. In particular, Stanley’s conjecture holds for these ideals. Also we show that if I is a monomial ideal with Ass(S/I) = {P1, P2, . . . , Ps} and Pi 6⊂ ∑s 1=j 6=i Pj for all i ∈ [s], then Stanley’s conjecture holds for S/

متن کامل

Minimal Homogenous Liaison and Licci Ideals

We study the linkage classes of homogeneous ideals in polynomial rings. An ideal is said to be homogeneously licci if it can be linked to a complete intersection using only homogeneous regular sequences at each step. We ask a natural question: if I is homogeneously licci, then can it be linked to a complete intersection by linking using regular sequences of forms of smallest possible degree at ...

متن کامل

Minimal Graded Betti Numbers and Stable Ideals

Let k be a field, and let R = k[x1, x2, x3]. Given a Hilbert function H for a cyclic module over R, we give an algorithm to produce a stable ideal I such that R/I has Hilbert function H and uniquely minimal graded Betti numbers among all R/J with the same Hilbert function, where J is another stable ideal in R. We also show that such an algorithm is impossible in more variables and disprove a re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1958

ISSN: 0025-5645

DOI: 10.2969/jmsj/01010064